首页> 外文OA文献 >Quantitative Assessment of the Detectability of Ceramic Inclusions in Structural Titanium Castings by X-Radiography
【2h】

Quantitative Assessment of the Detectability of Ceramic Inclusions in Structural Titanium Castings by X-Radiography

机译:X射线照相术定量评估结构钛铸件中陶瓷夹杂物的可检测性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of titanium—hot isostatic pressed (HIP) castings in damage tolerant aircraft structures requires not only a new approach in design philosophy and manufacturing methods, but also new methods and data for assuring structural integrity by nondestructive inspection methods. The use of large titanium castings (Fig. 1) in components that have been traditionally forged offers potential for reduction of aircraft weight, increases in structural stiffness, more uniform material properties, greater geometric complexity, reduced production cost, and reduced production lead time. Castings are produced by the investment casting process in which a ceramic coating (termed “facecoat”) is applied to a wax shape and is reinforced by the addition of a secondary coating (termed “stucco”). During the casting process, the facecoat (and sometimes stucco) may spall and be incorporated into the casting as a ceramic inclusion (termed “shell”). Casting component designs must therefor include acceptance criteria for shell inclusions in assuring damage tolerance in structural integrity of the component [1]. The lower limit of acceptance criteria is often based on the detection capabilities of applied nondestructive inspection procedures [2,3]. Each casting vendor uses a “proprietary” facecoat / stucco formulation and process, thus the detectability of the shell inclusions may vary with each vendor. Facecoat typically consists of three to five layers applied directly to the wax pattern. In addition, the anomaly size that must be used in design analysis, must include the affected area around the inclusion (termed the “halo”), as shown in Fig. 2, and is not the detected size that can be discriminated by nondestructive inspection procedures.
机译:在耐损飞机结构中使用钛热等静压(HIP)铸件不仅需要设计理念和制造方法上的新方法,而且还需要通过无损检查方法来确保结构完整性的新方法和数据。在传统上锻造的部件中使用大型钛铸件(图1)具有减轻飞机重量,增加结构刚度,更均匀的材料性能,更大的几何复杂度,降低生产成本和缩短生产提前期的潜力。通过熔模铸造工艺生产铸件,在该工艺中,将陶瓷涂层(称为“ facecoat”)涂在蜡形上,并通过添加辅助涂层(称为“灰泥”)进行加固。在铸造过程中,表面涂层(有时为灰泥)可能会剥落,并作为陶瓷夹杂物(称为“壳”)掺入铸件中。为此,铸造零件设计必须包括外壳夹杂物的验收标准,以确保零件结构完整性中的损伤容限[1]。接受标准的下限通常基于所应用的非破坏性检查程序的检测能力[2,3]。每个铸造供应商都使用“专有”面漆/灰泥配方和工艺,因此外壳夹杂物的可检测性可能因每个供应商而异。面漆通常由直接涂在蜡模上的三到五层组成。此外,如图2所示,必须在设计分析中使用的异常尺寸必须包括夹杂物周围的受影响区域(称为“光晕”),并且不是可以通过无损检查来区分的检测尺寸。程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号